CDPH ELAP 1644 ♦ NELAP 12283CA

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	when Qi	iainy Cou	ints	F	-					
Ecoloblue			Client Project ID: o	drinking water	Date Sampled: (08/06/13				
5702 Marsh	Drive, unit K				Date Received:	08/06/13				
	. , .		Client Contact: Hea	ther Jepson	Date Extracted: 08/07/13					
Pacheco, CA	A 94553		Client P.O.:		Date Analyzed: (08/07/13				
Extraction method	d: E300.1		Inorgan Analytical me	nic Anions by IC* ethods: E300.1		Work Or	der: 13081	192		
Lab ID	Client ID	Matrix	Fluoride	Nitrate as N	Nitrate as NO3	DF	% SS	Comments		
001B	Drinking Water	W	ND	0.31	1.4	1	114			
	ng Limit for DF =1;	W	0.1	0.1	0.45		mg/l	L		
	ns not detected at or the reporting limit	S	NA	NA	NA		mg/K	Zg .		
* water samples	are reported in mg/L, soil	/sludge/soli	d samples in mg/kg, wipe	samples in mg/wipe, produ	uct/oil/non-aqueous liquid sa	mples in m	ng/L.			
* [Nitrate as NC	$[03^{-}] = 4.4268 \text{ x [Nitrate as}]$	s N]								
	ate diluted out of range or stard; DF = Dilution Factor		pelutes with another peak;	N/A means surrogate not	applicable to this analysis; %	₀SS = Perc	ent Recov	ery of		

TD ___ Analyst's Initial

Page 6 of 23

Angela Rydelius, Lab Manager

Ecoloblue	Client Project ID: drinking water	Date Sampled: 08/06/13
5702 March Drive unit V	testing	Date Received: 08/06/13
5702 Marsh Drive, unit K	Client Contact: Heather Jepson	Date Extracted: 08/09/13
Pacheco, CA 94553	Client P.O.:	Date Analyzed: 08/09/13

Volatile Organics by P&T and GC/MS*

Extraction Method: E524.2 Analytical Method: E524.2 Work Order: 1308192

Lab ID				1308192-001A			
Client ID				Drinking Water			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl Methyl Ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	3.2	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon disulfide	ND	1.0	0.5
Carbon tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
n-Propyl benzene	ND	1.0	0.5	Styrene	ND	1.0	0.5
1,1,1,2-Tetrachloroethane	ND	1.0	0.5	1,1,2,2-Tetrachloroethane	ND	1.0	0.5
Tetrachloroethene	ND	1.0	0.5	Toluene	ND	1.0	0.5
1,2,3-Trichlorobenzene	ND	1.0	0.5	1,2,4-Trichlorobenzene	ND	1.0	0.5
1,1,1-Trichloroethane	ND	1.0	0.5	1,1,2-Trichloroethane	ND	1.0	0.5
Trichloroethene	ND	1.0	0.5	Trichlorofluoromethane	ND	1.0	0.5
1,2,3-Trichloropropane	ND	1.0	0.5	1,2,4-Trimethylbenzene	ND	1.0	0.5
1,3,5-Trimethylbenzene	ND	1.0	0.5	Vinyl chloride	ND	1.0	0.5
Xylenes, Total	ND	1.0	0.5				

Surrogate Recoveries (%)									
%SS1:	112	%SS2:	97						
%SS3:	96								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis. %SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

"When Quality Counts" http://www.mccampbell.com / E-mail: main@mccampbell.com									
Ecolobl	ue		Client Project ID: testing	drinking wat	er	Date	Sampled: 08/	06/13	
5702 M	arsh Drive, unit K		testing			Date	Received: 08/	06/13	
			Client Contact: He	eather Jepson		Date	Extracted: 08/	08/13	
Pacheco	o, CA 94553	-	Client P.O.:			Date	Analyzed: 08/	08/13	
Extraction	method: SM2320B	Total	& Speciated Alkal	-	ium Carb	onate		Vork Order:	1308192
Lab ID	Client ID	Matrix	Total*	Carbonate*	Bicarbo	nate*	Hydroxide*	DF	Comments
001C	Drinking Water	W	20.5	ND	20.	5	ND	1	
D.a	porting Limit for DF =1;	***	1.0	1.0	1 /)	1.0		C-CO /I
NE	o means not detected at or bove the reporting limit	W S	1.0 NA	1.0 NA	1.0 NA		1.0 NA		CaCO ₃ /L ng/Kg
	pples are reported in mg calciu								
	ion Factor						- ^		
					•			_	

Angela Rydelius, Lab Manager HN Analyst's Initial CDPH ELAP 1644 ♦ NELAP 12283CA

CDPH ELAP 1644 ♦ NELAP 12283CA

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269
http://www.mccampbell.com / E-mail: main@mccampbell.com

	"When Quality Con		<u>•</u>		one: (8//) 252-9262 / Fax: (appbell.com / E-mail: main@		
Ecoloblue		Client Project I testing	D: drinki	ng water	Date Sampled:	08/06/13	
5702 Marsh 1	Drive, unit K	- Coming			Date Received:	08/06/13	
		Client Contact:	Heather J	epson	Date Extracted:	08/22/13	
Pacheco, CA	. 94553	Client P.O.:			Date Analyzed:	08/19/13	
Analytical Metho	od: ASTM D7574-09	Bisphenol A b	y ASTM l	D7574-09*		Work Order:	1308192
Lab ID	Client ID		Matrix	Bis	phenol A	DF	Comments
1308192-001E	Drinking Water	:	W	ND		1	
<u> </u>			W	0.1	05 μg/L		
Reporting Lim	it for DF = 1; ND means not detecte reporting limit	d at or above the	S	0.	NA		
* water samples a	are reported in µg/L.				<u> </u>		
	etected at or above the reporting limit rogate Standard; DF means Dilution		mit; N/A mea	ans analyte not appl	icable to this analysis; 9	6SS means I	Percent
#) surrogate dilut	ted out of range or surrogate coelutes	s with another peak.;	&) low or no	surrogate due to m	atrix interference.		

DP Analyst's Initial Angela Rydelius, Lab Manager

CDPH ELAP 1644 ♦ NELAP 12283CA

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Ecoloblue	Client Project ID: dri	inking water	Date Sampled:	08/06/13			
5702 Marsh Drive, unit K	testing		Date Received:	08/06/13			
5702 Ividish Diive, diffe K	Client Contact: Heath	er Jepson	Date Extracted: 08/06/13				
Pacheco, CA 94553	Client P.O.:	Date Analyzed:	08/06/13				
Extraction method: SM4500-Cl DE		oramine* ods: SM4500-Cl F		Work O	der: 1308	192	
Lab ID Client ID Ma	Analytical methods: SM4500-Cl F ix Dichloramine Monochloramin		Total Chloramine	DF	% SS	Comments	
001F Drinking Water V	ND	ND	ND	1	N/A		
Reporting Limit for DF =1;	0.04	0.04	0.04		mg/l	L L	
ND means not detected at or above the reporting limit	NA	NA	NA		mg/K		
* water samples are reported in mg/L.							
According the formal method, this is "field test" v designated a 24 hour hold time for aqueous sample		wever, as this is unrealist	ically short for commercia	l environme	ntal analys	is, MAI has	
DF = Dilution Factor							

HN Analyst's Initial

Page 10 of 23

Angela Rydelius, Lab Manager

1	when Quality	Counts		1	F						
Ecoloblue 5702 Marsh Drive, unit K			Project ID: drin	king water	Date San	npled: 08/06/1	13				
Ecoloblue	testing			Date Rec	Date Received: 08/06/13						
37021	viaisii Diive, uiiit K	Client	Contact: Heather	Jepson	Date Ext	Date Extracted: 08/07/13					
Pache	co, CA 94553	Client	P.O.:		Date Ana	lyzed: 08/07/1	13				
		<u> </u>	Me	tals*	<u> </u>						
Extractio			Analytical methods: E200.8				Work Order: 1308192				
Lab ID	Client ID	Matrix	Extraction Type	Copper	Iron	Manganese	DF	% SS	Comments		
001H	Drinking Water	W	TOTAL	ND	ND	ND	1	N/A			
							-				
							<u> </u>				
							<u> </u>				
							ļ				
	Described Limit for DE 1.										
	Reporting Limit for DF =1; ND means not detected at or	S	TOTAL TOTAL	NA	100 NA	20 NA	-	μg/ N/			
*xyotor o	above the reporting limit amples are reported in µg/L, product/oil						2 mg/L s				
	in mg/kg, wipe samples in µg/wipe, filt			ICLI / WEI / L	n wei/ Si Ei ex	racts are reported in	i ilig/L, s	on/siudg	e/soliu		
# means	surrogate diluted out of range; ND mea	ns not detected	above the reporting l	imit/method dete	ction limit; N/A m	eans not applicable	to this sa	ample or	instrument.		
	= Hot acid digestion of a representative Fotal recoverable metals is the "direct and acid the content of the co			om its acid-preser	ved container.						
	Dissolved metals by direct analysis of 0.										
	ercent Recovery of Surrogate Standard ution Factor										
СДРН	ELAP 1644 ♦ NELAP 12283C	4	DB	Analyst's I	nitial C	Angela Ry	vdelins	. Lah M	l anager		
						50 14.	,	,			

1534 Willow Pass Road, Pittsburg, CA 94565-1701

	"When Quality Con				bell.com / E-mail: main@m		
Ecoloblue		Client Project ID: testing	drinkin	ng water	Date Sampled: 0		
5702 Marsh	Drive, unit K				Date Received: 0		
		Client Contact: Ho	eather Je	epson	Date Extracted: 0		
Pacheco, CA	.94553	Client P.O.:			Date Analyzed: 0	8/06/13	
Analytical Metho	od: SM4500H±R	pl	H*		V	Vork Order:	1308192
Lab ID	Client ID	N	I atrix		pН	DF	Comments
1308192-001D	Drinking Water	r	W	7.59	@ 18.0°C	1	
	Method Accuracy and Reporting U	nite	W	+0.05, pl	H units @ °C		
	Method Accuracy and Reporting Of	ints	S		NA	_	
	formal method, this is "field test" was designated a 24 hour hold time for		ne. Howev	er, as this is unreali	stically short for comme	rcial enviro	nmental
DF = Dilution Fa		aqueous samples.					
DI DIIMIONI I							

Angela Rydelius, Lab Manager RB Analyst's Initial CDPH ELAP 1644 ♦ NELAP 12283CA

	"When Qua					nail: main@mccampbell.com					
Ecolo	blue		Client Project ID:	drinking water testing	Date Sam	npled: 08/06/13					
5702	Marsh Drive, unit K				Date Rec	Date Received: 08/06/13					
	,		Client Contact: H	eather Jepson	Date Extr	racted: 08/06/13					
Pache	co, CA 94553		Client P.O.:		Date Ana	llyzed: 08/07/13					
Analyt	ical Method: SM9223B		Total Colifor	rm / E. Coli, Enumera	tion	Wor	k Order: 13	308192			
Lab ID	Client ID	Matr	rix Total Coliform	95% Confident Interval	E. Coli	95% Confident Interval	DF	Comments			
001G	Drinking Water	W	ND		ND		1				
		117		10300	1/1001	1					
Rep	orting Limit & Reporting Units	S		1.0 MPN							
DF = Di	lution Factor										

CDPH ELAP 1644 ♦ NELAP 12283CA

AB Analyst's Initial

Angela Rydelius, Lab Manager

Reporting Limit for DF = 1; ND means not detected at or above the reporting limit	W S	10 mg/L NA	
* water samples reported in mg/L. DF = Dilution Factor			

Angela Rydelius, Lab Manager CDPH ELAP 1644 ♦ NELAP 12283CA AL Analyst's Initial

QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80231 WorkOrder: 1308192

EPA Method: E300.1 Extraction: E300.1 Spiked Sample ID: 1308176-001A									1308176-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)	
,	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Fluoride	ND<1.0	1	NR	NR	NR	95.5	N/A	N/A	85 - 115
Nitrate as N	32	1	NR	NR	NR	92.8	N/A	N/A	85 - 115
Nitrate as NO3 ⁻	140	4.4	NR	NR	NR	93.4	N/A	N/A	85 - 115
%SS:	#	0.10	NR	NR	NR	115	N/A	N/A	90 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80231 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001B	08/06/13	3 08/07/13	08/07/13 9:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

surrogate diluted out of range or surrogate coelutes with another peak.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E524.2

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80389 WorkOrder: 1308192

EPA Method: E524.2 Extraction: E524.2 Spiked Sample ID: N/A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acetone	N/A	200	N/A	N/A	N/A	87.9	N/A	N/A	70 - 130
tert-Amyl Methyl Ether (TAME)	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130
Benzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
Bromobenzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
Bromochloromethane	N/A	10	N/A	N/A	N/A	109	N/A	N/A	70 - 130
Bromodichloromethane	N/A	10	N/A	N/A	N/A	112	N/A	N/A	70 - 130
Bromoform	N/A	10	N/A	N/A	N/A	127	N/A	N/A	70 - 130
Bromomethane	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130
2-Butanone (MEK)	N/A	40	N/A	N/A	N/A	108	N/A	N/A	70 - 130
t-Butyl alcohol (TBA)	N/A	40	N/A	N/A	N/A	102	N/A	N/A	70 - 130
n-Butyl benzene	N/A	10	N/A	N/A	N/A	103	N/A	N/A	70 - 130
sec-Butyl benzene	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130
tert-Butyl benzene	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130
Carbon disulfide	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130
Carbon tetrachloride	N/A	10	N/A	N/A	N/A	118	N/A	N/A	70 - 130
Chlorobenzene	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130
Chloroethane	N/A	10	N/A	N/A	N/A	98.9	N/A	N/A	70 - 130
Chloroform	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130
Chloromethane	N/A	10	N/A	N/A	N/A	98.4	N/A	N/A	70 - 130
2-Chlorotoluene	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130
4-Chlorotoluene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
Dibromochloromethane	N/A	10	N/A	N/A	N/A	121	N/A	N/A	70 - 130
1,2-Dibromo-3-chloropropane	N/A	4	N/A	N/A	N/A	102	N/A	N/A	70 - 130
1,2-Dibromoethane (EDB)	N/A	10	N/A	N/A	N/A	111	N/A	N/A	70 - 130
Dibromomethane	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130
1,2-Dichlorobenzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
1,3-Dichlorobenzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
1,4-Dichlorobenzene	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130
Dichlorodifluoromethane	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130
1,1-Dichloroethane	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130
1,2-Dichloroethane (1,2-DCA)	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

SH QA/QC Officer

QC SUMMARY REPORT FOR E524.2

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80389 WorkOrder: 1308192

EPA Method: E524.2	EPA Method: E524.2 Extraction: E524.2 Spiked Sample ID: N/A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
, may to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
1,1-Dichloroethene	N/A	10	N/A	N/A	N/A	109	N/A	N/A	70 - 130	
cis-1,2-Dichloroethene	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
trans-1,2-Dichloroethene	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130	
1,2-Dichloropropane	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
1,3-Dichloropropane	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
2,2-Dichloropropane	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130	
1,1-Dichloropropene	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130	
cis-1,3-Dichloropropene	N/A	10	N/A	N/A	N/A	117	N/A	N/A	70 - 130	
trans-1,3-Dichloropropene	N/A	10	N/A	N/A	N/A	117	N/A	N/A	70 - 130	
Diisopropyl ether (DIPE)	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130	
Ethylbenzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130	
Ethyl tert-butyl ether (ETBE)	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
Freon 113	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130	
Hexachlorobutadiene	N/A	10	N/A	N/A	N/A	97.6	N/A	N/A	70 - 130	
2-Hexanone	N/A	10	N/A	N/A	N/A	113	N/A	N/A	70 - 130	
Isopropylbenzene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130	
4-Isopropyl toluene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130	
Methyl-t-butyl ether (MTBE)	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130	
Methylene chloride	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130	
4-Methyl-2-pentanone (MIBK)	N/A	10	N/A	N/A	N/A	112	N/A	N/A	70 - 130	
Naphthalene	N/A	10	N/A	N/A	N/A	115	N/A	N/A	70 - 130	
n-Propyl benzene	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130	
Styrene	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
1,1,1,2-Tetrachloroethane	N/A	10	N/A	N/A	N/A	115	N/A	N/A	70 - 130	
1,1,2,2-Tetrachloroethane	N/A	10	N/A	N/A	N/A	111	N/A	N/A	70 - 130	
Tetrachloroethene	N/A	10	N/A	N/A	N/A	100	N/A	N/A	70 - 130	
Toluene	N/A	10	N/A	N/A	N/A	104	N/A	N/A	70 - 130	
1,2,3-Trichlorobenzene	N/A	10	N/A	N/A	N/A	107	N/A	N/A	70 - 130	
1,2,4-Trichlorobenzene	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130	
1,1,1-Trichloroethane	N/A	10	N/A	N/A	N/A	110	N/A	N/A	70 - 130	
1,1,2-Trichloroethane	N/A	10	N/A	N/A	N/A	110	N/A	N/A	70 - 130	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

SH QA/QC Officer

QC SUMMARY REPORT FOR E524.2

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80389 WorkOrder: 1308192

EPA Method: E524.2 Extraction: E524.2 Spik								iked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
, mayte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Trichloroethene	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130	
Trichlorofluoromethane	N/A	10	N/A	N/A	N/A	100	N/A	N/A	70 - 130	
1,2,3-Trichloropropane	N/A	10	N/A	N/A	N/A	111	N/A	N/A	70 - 130	
1,2,4-Trimethylbenzene	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130	
1,3,5-Trimethylbenzene	N/A	10	N/A	N/A	N/A	106	N/A	N/A	70 - 130	
Vinyl chloride	N/A	10	N/A	N/A	N/A	101	N/A	N/A	70 - 130	
%SS1:	N/A	35	N/A	N/A	N/A	111	N/A	N/A	70 - 130	
%SS2:	N/A	35	N/A	N/A	N/A	92	N/A	N/A	70 - 130	
%SS3:	N/A	3.5	N/A	N/A	N/A	100	N/A	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80389 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1308192-001A	08/06/13	8 08/09/13	08/09/13 12:52 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: SM2320B (Alkalinity) Matrix: W WorkOrder: 1308192

Method Name: SM23	320B		Units: mg Ca0	CO ₃ /L		BatchID: 80320		
Lab ID	Lab ID Sample 1308192-001C 20.5		Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)		
1308192-001C			17.6	1	15	<20		

BATCH 80320 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001C	08/06/1	3 08/08/13	08/08/13 9:36 AM				

Test Method: SM4500H+B (pH) Matrix: W WorkOrder: 1308192

Method Name: SM45	Method Name: SM4500H+B			nits @ °C		BatchID: 80250		
Lab ID	Sample	DF	Dup / Ser. Dil.	DF	Precision	Acceptance Criteria		
1308192-001D	7.59 @ 18.0°C 1		7.57 @ 17.9°C	1	0.02	0.05		

BATCH 80250 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001D	08/06/1	3 08/06/13	08/06/13 9:46 PM				_

Test Method: SM2540C (TDS) Matrix: W WorkOrder: 1308192

Method Name: SM25	Method Name: SM2540C					BatchID: 80356		
Lab ID Sample		DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)		
1308192-001D	308192-001D ND		ND<20.0	2	N/A	<20		

BATCH 80356 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001D	08/06/1	.3 08/07/13	08/08/13 6:35 PM				

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

OC SUMMARY REPORT FOR ASTM D7574-09

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80895 WorkOrder: 1308192

EPA Method: ASTM D7574-09 Extraction: ASTM D7574-09 Sp							piked Sam	ple ID:	1308192-001E
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, mayte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Bisphenol A	ND	5	103	101	2.10	100	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80895 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001E	08/06/1	3 08/22/13	08/19/13 1:33 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SM4500-Cl F

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80234 WorkOrder: 1308192

EPA Method: SM4500-CI F Extrac	Extraction: SM4500-CI DE					Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		Criteria (%)	
, wan, t	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Chlorine	N/A	0.20	N/A	N/A	N/A	106	N/A	N/A	80 - 120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80234 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001F	08/06/1	3 08/06/13	08/06/13 9:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 80266 WorkOrder: 1308192

EPA Method: E200.8	traction: E200.8					5	Spiked Sam	ple ID:	1307958-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Copper	26	50	92.4	90.4	1.43	105	85 - 115	20	85 - 115
Iron	ND	500	97.5	96.2	1.34	98.5	85 - 115	20	85 - 115
Manganese	ND	500	96.1	94	2.17	101	85 - 115	20	85 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80266 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001H	08/06/13	3 08/07/13	08/07/13 1:24 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: SM9223B (Total Coliform & E. Coli) Matrix: W WorkOrder: 1308192

Method Na	ame: SM9223B	BatchID: 80245						
Lab ID	Analyte	Reporting Units	Sample	DF	Dup	DF	% RPD	Acceptance Criteria (%)
1308192-001G	E Coli	MPN/100ml	ND	1	ND	1	N/A	<70
	Total Coliform	MPN/100ml	ND	1	ND	1	N/A	<70

BATCH 80245 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308192-001G	08/06/1	3 08/06/13	08/07/13 4:33 PM				

% RPD = abs(Sample - Dup) / ((Sample + Dup) / 2) * 100

N/A = Not Applicable

NR = %RPD may fall outside of laboratory acceptance criteria due to sample inconsistency between two containers